This includes the new Apache Kafka consumer API.
Apache Kafka versions 0.10.1.0 onwards. Please be aware that KAFKA-7044 can cause crashes in the spout, so you should upgrade Kafka if you are using an affected version (1.1.0, 1.1.1 or 2.0.0).
You can create an instance of org.apache.storm.kafka.bolt.KafkaBolt and attach it as a component to your topology or if you are using trident you can use org.apache.storm.kafka.trident.TridentState, org.apache.storm.kafka.trident.TridentStateFactory and org.apache.storm.kafka.trident.TridentKafkaUpdater.
You need to provide implementations for the following 2 interfaces
These interfaces have 2 methods defined:
K getKeyFromTuple(Tuple/TridentTuple tuple);
V getMessageFromTuple(Tuple/TridentTuple tuple);
As the name suggests, these methods are called to map a tuple to a Kafka key and a Kafka message. If you just want one field as key and one field as value, then you can use the provided FieldNameBasedTupleToKafkaMapper.java implementation. In the KafkaBolt, the implementation always looks for a field with field name “key” and “message” if you use the default constructor to construct FieldNameBasedTupleToKafkaMapper for backward compatibility reasons. Alternatively you could also specify a different key and message field by using the non default constructor. In the TridentKafkaState you must specify what is the field name for key and message as there is no default constructor. These should be specified while constructing an instance of FieldNameBasedTupleToKafkaMapper.
This interface has only one method
public interface KafkaTopicSelector {
String getTopics(Tuple/TridentTuple tuple);
}
The implementation of this interface should return the topic to which the tuple’s key/message mapping needs to be published
You can return a null and the message will be ignored. If you have one static topic name then you can use
DefaultTopicSelector.java and set the name of the topic in the constructor.
FieldNameTopicSelector
and FieldIndexTopicSelector
can be used to select the topic should to publish a tuple to.
A user just needs to specify the field name or field index for the topic name in the tuple itself.
When the topic is name not found , the Field*TopicSelector
will write messages into default topic .
Please make sure the default topic has been created .
You can provide all the producer properties in your Storm topology by calling KafkaBolt.withProducerProperties()
and TridentKafkaStateFactory.withProducerProperties()
. Please see http://kafka.apache.org/documentation.html#newproducerconfigs
Section “Important configuration properties for the producer” for more details.
These are also defined in org.apache.kafka.clients.producer.ProducerConfig
You can do a wildcard topic match by adding the following config
Config config = new Config();
config.put("kafka.topic.wildcard.match",true);
After this you can specify a wildcard topic for matching e.g. clickstream.*.log. This will match all streams matching clickstream.my.log, clickstream.cart.log etc
For the bolt :
TopologyBuilder builder = new TopologyBuilder();
Fields fields = new Fields("key", "message");
FixedBatchSpout spout = new FixedBatchSpout(fields, 4,
new Values("storm", "1"),
new Values("trident", "1"),
new Values("needs", "1"),
new Values("javadoc", "1")
);
spout.setCycle(true);
builder.setSpout("spout", spout, 5);
//set producer properties.
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaBolt bolt = new KafkaBolt()
.withProducerProperties(props)
.withTopicSelector(new DefaultTopicSelector("test"))
.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());
builder.setBolt("forwardToKafka", bolt, 8).shuffleGrouping("spout");
Config conf = new Config();
StormSubmitter.submitTopology("kafkaboltTest", conf, builder.createTopology());
For Trident:
Fields fields = new Fields("word", "count");
FixedBatchSpout spout = new FixedBatchSpout(fields, 4,
new Values("storm", "1"),
new Values("trident", "1"),
new Values("needs", "1"),
new Values("javadoc", "1")
);
spout.setCycle(true);
TridentTopology topology = new TridentTopology();
Stream stream = topology.newStream("spout1", spout);
//set producer properties.
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
.withProducerProperties(props)
.withKafkaTopicSelector(new DefaultTopicSelector("test"))
.withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("word", "count"));
stream.partitionPersist(stateFactory, fields, new TridentKafkaStateUpdater(), new Fields());
Config conf = new Config();
StormSubmitter.submitTopology("kafkaTridentTest", conf, topology.build());
The spout implementations are configured by use of the KafkaSpoutConfig
class. This class uses a Builder pattern and can be started either by calling one of
the Builders constructors or by calling the static method builder in the KafkaSpoutConfig class.
The Constructor or static method to create the builder require a few key values (that can be changed later on) but are the minimum config needed to start a spout.
bootstrapServers
is the same as the Kafka Consumer Property “bootstrap.servers”.
topics
The topics the spout will consume can either be a Collection
of specific topic names (1 or more) or a regular expression Pattern
, which specifies
that any topics that match that regular expression will be consumed.
If you are using the Builder Constructors instead of one of the builder
methods, you will also need to specify a key deserializer and a value deserializer. This is to help guarantee type safety through the use
of Java generics. The deserializers can be specified via the consumer properties set with setProp
. See the KafkaConsumer configuration documentation for details.
There are a few key configs to pay attention to.
setFirstPollOffsetStrategy
allows you to set where to start consuming data from. This is used both in case of failure recovery and starting the spout
for the first time. The allowed values are listed in the FirstPollOffsetStrategy javadocs.
setProcessingGuarantee
lets you configure what processing guarantees the spout will provide. This affects how soon consumed offsets can be committed, and the frequency of commits. See the ProcessingGuarantee javadoc for details.
setRecordTranslator
allows you to modify how the spout converts a Kafka Consumer Record into a Tuple, and which stream that tuple will be published into.
By default the “topic”, “partition”, “offset”, “key”, and “value” will be emitted to the “default” stream. If you want to output entries to different
streams based on the topic, storm provides ByTopicRecordTranslator
. See below for more examples on how to use these.
setProp
and setProps
can be used to set KafkaConsumer properties. The list of these properties can be found in the KafkaConsumer configuration documentation on the Kafka website. Note that KafkaConsumer autocommit is unsupported. The KafkaSpoutConfig constructor will throw an exception if the “enable.auto.commit” property is set, and the consumer used by the spout will always have that property set to false. You can configure similar behavior to autocommit through the setProcessingGuarantee
method on the KafkaSpoutConfig builder.
The API is written with java 8 lambda expressions in mind. It works with java7 and below though.
The following will consume all events published to “topic” and send them to MyBolt with the fields “topic”, “partition”, “offset”, “key”, “value”.
final TopologyBuilder tp = new TopologyBuilder();
tp.setSpout("kafka_spout", new KafkaSpout<>(KafkaSpoutConfig.builder("127.0.0.1:" + port, "topic").build()), 1);
tp.setBolt("bolt", new myBolt()).shuffleGrouping("kafka_spout");
...
Wildcard topics will consume from all topics that exist in the specified brokers list and match the pattern. So in the following example “topic”, “topic_foo” and “topic_bar” will all match the pattern “topic.*”, but “not_my_topic” would not match.
final TopologyBuilder tp = new TopologyBuilder();
tp.setSpout("kafka_spout", new KafkaSpout<>(KafkaSpoutConfig.builder("127.0.0.1:" + port, Pattern.compile("topic.*")).build()), 1);
tp.setBolt("bolt", new myBolt()).shuffleGrouping("kafka_spout");
...
This uses java 8 lambda expressions.
final TopologyBuilder tp = new TopologyBuilder();
//By default all topics not covered by another rule, but consumed by the spout will be emitted to “STREAM_1” as “topic”, “key”, and “value” ByTopicRecordTranslator<String, String> byTopic = new ByTopicRecordTranslator<>( (r) -> new Values(r.topic(), r.key(), r.value()), new Fields(“topic”, “key”, “value”), “STREAM_1”); //For topic_2 all events will be emitted to “STREAM_2” as just “key” and “value” byTopic.forTopic(“topic_2”, (r) -> new Values(r.key(), r.value()), new Fields(“key”, “value”), “STREAM_2”);
tp.setSpout(“kafka_spout”, new KafkaSpout<>(KafkaSpoutConfig.builder(“127.0.0.1:” + port, “topic_1”, “topic_2”, “topic_3”).build()), 1); tp.setBolt(“bolt”, new myBolt()).shuffleGrouping(“kafka_spout”, “STREAM_1”); tp.setBolt(“another”, new myOtherBolt()).shuffleGrouping(“kafka_spout”, “STREAM_2”); …
#### Trident
```java
final TridentTopology tridentTopology = new TridentTopology();
final Stream spoutStream = tridentTopology.newStream("kafkaSpout",
new KafkaTridentSpoutOpaque<>(KafkaSpoutConfig.builder("127.0.0.1:" + port, Pattern.compile("topic.*")).build()))
.parallelismHint(1)
...
Trident does not support multiple streams and will ignore any streams set for output. If however the Fields are not identical for each output topic it will throw an exception and not continue.
In most cases the built in SimpleRecordTranslator and ByTopicRecordTranslator should cover your use case. If you do run into a situation where you need a custom one then this documentation will describe how to do this properly, and some of the less than obvious classes involved.
The point of apply
is to take a ConsumerRecord and turn it into a List<Object>
that can be emitted. What is not obvious is how to tell the spout to emit it to a
specific stream. To do this you will need to return an instance of org.apache.storm.kafka.spout.KafkaTuple
. This provides a method routedTo
that will say which
specific stream the tuple should go to.
For Example:
return new KafkaTuple(1, 2, 3, 4).routedTo("bar");
Will cause the tuple to be emitted on the “bar” stream.
Be careful when writing custom record translators because just like in a storm spout it needs to be self consistent. The streams
method should return
a full set of streams that this translator will ever try to emit on. Additionally getFieldsFor
should return a valid Fields object for each of those
streams. If you are doing this for Trident a value must be in the List returned by apply
for every field in the Fields object for that stream,
otherwise trident can throw exceptions.
By default the KafkaSpout instances will be assigned partitions using a round robin strategy. If you need to customize partition assignment, you must implement the ManualPartitioner
interface. The implementation can be passed to the ManualPartitionSubscription
constructor, and the Subscription
can then be set in the KafkaSpoutConfig
via the KafkaSpoutConfig.Builder
constructor. Please take care when supplying a custom implementation, since an incorrect ManualPartitioner
implementation could leave some partitions unread, or concurrently read by multiple spout instances. See the RoundRobinManualPartitioner
for an example of how to implement this functionality.
Add the following to REPO_HOME/storm/external/storm-kafka-client/pom.xml
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>org.apache.storm.kafka.spout.test.KafkaSpoutTopologyMain</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
create the uber jar by running the command:
mvn package -f REPO_HOME/storm/external/storm-kafka-client/pom.xml
This will create the uber jar file with the name and location matching the following pattern:
REPO_HOME/storm/external/storm-kafka-client/target/storm-kafka-client-1.0.x.jar
Copy the file REPO_HOME/storm/external/storm-kafka-client/target/storm-kafka-client-*.jar
to STORM_HOME/extlib
Using the Kafka command line tools create three topics [test, test1, test2] and use the Kafka console producer to populate the topics with some data
Execute the command STORM_HOME/bin/storm jar REPO_HOME/storm/external/storm/target/storm-kafka-client-*.jar org.apache.storm.kafka.spout.test.KafkaSpoutTopologyMain
With the debug level logs enabled it is possible to see the messages of each topic being redirected to the appropriate Bolt as defined by the streams defined and choice of shuffle grouping.
Storm-kafka-client’s Kafka dependency is defined as provided
scope in maven, meaning it will not be pulled in
as a transitive dependency. This allows you to use a version of Kafka dependency compatible with your kafka cluster.
When building a project with storm-kafka-client, you must explicitly add the Kafka clients dependency. For example, to
use Kafka-clients 0.10.0.0, you would use the following dependency in your pom.xml
:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.10.0.0</version>
</dependency>
You can also override the kafka clients version while building from maven, with parameter storm.kafka.client.version
e.g. mvn clean install -Dstorm.kafka.client.version=0.10.0.0
When selecting a kafka client version, you should ensure -
The Kafka spout provides two internal parameters to control its performance. The parameters can be set using the setOffsetCommitPeriodMs and setMaxUncommittedOffsets methods.
The [Kafka consumer config] (http://kafka.apache.org/documentation.html#consumerconfigs) parameters may also have an impact on the performance of the spout. The following Kafka parameters are likely the most influential in the spout performance:
Depending on the structure of your Kafka cluster, distribution of the data, and availability of data to poll, these parameters will have to be configured appropriately. Please refer to the Kafka documentation on Kafka parameter tuning.
Currently the Kafka spout has has the following default values, which have been shown to give good performance in the test environment as described in this [blog post] (https://hortonworks.com/blog/microbenchmarking-storm-1-0-performance/)
By default the spout only tracks emitted tuples when the processing guarantee is AT_LEAST_ONCE. It may be necessary to track emitted tuples with other processing guarantees to benefit from Storm features such as showing complete latency in the UI, or enabling backpressure with Config.TOPOLOGY_MAX_SPOUT_PENDING.
KafkaSpoutConfig<String, String> kafkaConf = KafkaSpoutConfig
.builder(String bootstrapServers, String ... topics)
.setProcessingGuarantee(ProcessingGuarantee.AT_MOST_ONCE)
.setTupleTrackingEnforced(true)
Note: This setting has no effect with AT_LEAST_ONCE processing guarantee, where tuple tracking is required and therefore always enabled.
storm-kafka
to storm-kafka-client
spout propertiesThis may not be an exhaustive list because the storm-kafka
configs were taken from Storm 0.9.6
SpoutConfig and
KafkaConfig.
storm-kafka-client
spout configurations were taken from Storm 1.0.6
KafkaSpoutConfig
and Kafka 0.10.1.0 ConsumerConfig.
SpoutConfig | KafkaSpoutConfig/ConsumerConfig | KafkaSpoutConfig Usage |
---|---|---|
Setting: startOffsetTime Default: EarliestTime ________________ Setting: forceFromStart Default: false startOffsetTime & forceFromStart together determine the starting offset. forceFromStart determines whether the Zookeeper offset is ignored. startOffsetTime sets the timestamp that determines the beginning offset, in case there is no offset in Zookeeper, or the Zookeeper offset is ignored |
Setting: FirstPollOffsetStrategy Default: UNCOMMITTED_EARLIEST Refer to the helper table for picking FirstPollOffsetStrategy based on your startOffsetTime & forceFromStart settings |
<KafkaSpoutConfig-Builder>.setFirstPollOffsetStrategy(<strategy-name>) |
Setting: scheme The interface that specifies how a ByteBuffer from a Kafka topic is transformed into Storm tuple Default: RawMultiScheme |
Setting: Deserializers |
<KafkaSpoutConfig-Builder>.setProp(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, <deserializer-class>) <KafkaSpoutConfig-Builder>.setProp(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, <deserializer-class>) |
Setting: fetchSizeBytes Message fetch size – the number of bytes to attempt to fetch in one request to a Kafka server Default: 1MB |
Setting: max.partition.fetch.bytes |
<KafkaSpoutConfig-Builder>.setProp(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, <int-value>) |
Setting: bufferSizeBytes Buffer size (in bytes) for network requests. The buffer size which consumer has for pulling data from producer Default: 1MB |
Setting: receive.buffer.bytes |
<KafkaSpoutConfig-Builder>.setProp(ConsumerConfig.RECEIVE_BUFFER_CONFIG, <int-value>) |
Setting: socketTimeoutMs Default: 10000 |
N/A | |
Setting: useStartOffsetTimeIfOffsetOutOfRange Default: true |
Setting: auto.offset.reset Default: Note that the default value for auto.offset.reset is earliest if you have ProcessingGuarantee set to AT_LEAST_ONCE , but the default value is latest otherwise. |
<KafkaSpoutConfig-Builder>.setProp(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, <String>) |
Setting: fetchMaxWait Maximum time in ms to wait for the response Default: 10000 |
Setting: fetch.max.wait.ms |
<KafkaSpoutConfig-Builder>.setProp(ConsumerConfig.FETCH_MAX_WAIT_MS_CONFIG, <value>) |
Setting: maxOffsetBehind Specifies how long a spout attempts to retry the processing of a failed tuple. One of the scenarios is when a failing tuple’s offset is more than maxOffsetBehind behind the acked offset, the spout stops retrying the tuple.Default: LONG.MAX_VALUE |
N/A | |
Setting: clientId |
Setting: client.id |
<KafkaSpoutConfig-Builder>.setProp(ConsumerConfig.CLIENT_ID_CONFIG, <String>) |
If you are using this table to upgrade your topology to use storm-kafka-client
instead of storm-kafka
, then you will also need to migrate the consumer offsets from ZooKeeper to Kafka broker. Use storm-kafka-migration
tool to migrate the Kafka consumer offsets.
FirstPollOffsetStrategy
Pick and set FirstPollOffsetStrategy
based on startOffsetTime
& forceFromStart
settings:
startOffsetTime |
forceFromStart |
FirstPollOffsetStrategy |
---|---|---|
EarliestTime |
true |
EARLIEST |
EarliestTime |
false |
UNCOMMITTED_EARLIEST |
LatestTime |
true |
LATEST |
LatestTime |
false |
UNCOMMITTED_LATEST |